Studies towards the synthesis of diazonamide A. U nexpected formation of a 3,4-bridged indole

C hristopher J. M oody,* $\dagger^{\text {a }}$ Kevin J. D oyle, ${ }^{\text {a }}$ M ark C . Elliott $\ddagger{ }^{, a}$ and Timothy J. M owlem ${ }^{\text {b }}$
${ }^{\text {a }}$ D epartment of C hemistry, L oughborough U niversity, L oughborough, L eicestershire, UK LE113TU
${ }^{\text {b }}$ Shell R esearch L td, Sittingbourne Research Centre, Sittingbourne, K ent, UK M E9 8AG

Abstract

M odel studies towards the synthesis of the cytotoxic marine natural product diazonamide A are described. T hree model 3-phenylbenzo[b]furan derivatives 5,8 and 10 were prepared using rhodium (ı) catalysed decomposition of the diazophenylacetate 3, C laisen rearrangement of the ether 7, and a classical intramolecular F riedel-C rafts reaction as key steps. O nly the aromatic benzofuran system proved satisfactory in palladium coupling reactions; diazoacetyl(benzofuranyl)indole 18 was prepared by Suzuki coupling of (benzofuran-7-yl)boronic acid 11 with 4 -bromoindole 14 to give 17 , followed by diazo-transfer. R hodium(II) catalysed decomposition of 18 in acetonitrile resulted in the formation of the 3,4-bridged indole 19 rather than the desired oxazole 20.

Recently the isolation of a number of oxazole containing natural products, particularly from marine sources, has caused a renewed interest in the chemistry of oxazoles. ${ }^{1,2} \mathrm{~N}$ aturally occurring oxazoles range in structure from relatively simple 2,5 substituted derivatives to more complex bis-oxazoles such as the diazonamides. The diazonamides, exemplified by diazonamide A 1, isolated from the ascidan Diazona chinensis ${ }^{3}$ show potent anticancer activity, and their fascinating structure incorporating a unique array of heterocyclic rings has made them attractive targets for synthesis. K onopelski et al. ${ }^{4}$ have recently disclosed one approach to diazonamide A fragments based on cross-coupling methodology for the functionalisation of the indole 4-position and the catalysed decomposition of diazocarbonyl compounds developed by us ${ }^{5-7}$ and others ${ }^{8}$ for the formation of the oxazole fragment.

† Present address: Department of Chemistry, U niversity of Exeter, Stocker Rd, Exeter, UK EX 4 4QD
\ddagger Present address: D epartment of Chemistry, University of Wales Cardiff, PO Box 912, Cardiff, UK CF 1 3TB.

Following our recent synthesis of simple bis-oxazoles, ${ }^{5}$ and of the 3 -(oxazol-5-yl)indole alkaloids using rhodium(iI) catalysed reactions of diazocarbonyl compounds with nitriles, ${ }^{6,7}$ we turned our attention to the synthesis of model compounds for the 4-benzofuranyl-3-oxazolylindole fragment of diazonamide A, in which a simple phenyl group replaces the tyrosine residue of the natural product. In particular we targeted compound $\mathbf{2}$ in which a cyclisation of an anion derived from the 2methyloxazole onto the 3 -ester of the benzofuranone will complete the formation of the lower diazonamide fragment and allow elaboration of the valine-derived oxazole. ${ }^{9}$ We now report the results of our initial studies in this area. ${ }^{10}$

Results and discussion

We have previously reported the formation of oxoindolines by intramolecular rhodium(II) catalysed aromatic C-H insertion reactions, ${ }^{11}$ and in particular have established that catalysts bearing perfluorinated amide ligands are particularly effective for such transformations. We wished to extend this methodology to the synthesis of benzofuranones as precursors to the 2hydroxybenzofuran ring of diazonamide A. From the outset we had intended to join the indole and benzofuran rings using palladium catalysed cross-coupling, so that the 7-bromobenzofuran derivatives 4 and 5 were chosen as initial targets. The diazo phenylacetate substrate $\mathbf{3}$ was prepared in a straightforward manner from 2-bromophenol (Scheme 1). H owever, rhodium(II) perfluorobutyramide-catalysed decomposition of 3 provided the desired benzofuranone 4 in only 20% yield (Scheme 1). This poor yield in the intramolecular aromatic $\mathrm{C}-\mathrm{H}$ insertion reaction is in direct contrast to the preparation of 3 -acetylbenzofuran-2-ones by the rhodium(II) catalysed decomposition of the corresponding α-diazo- β-keto esters which are reported to proceed in high yield. ${ }^{12}$ Presumably the additional carbonyl substituent renders the intermediate carbenoid more electrophilic. N evertheless sufficient benzofuranone 4 was obtained, and following the method of Black et al. ${ }^{13}$ it was C -acylated in high yield to give the 3 -ester 5 .
In view of the poor yield in the rhodium(II) catalysed cyclisation reaction, we investigated an alternative route to 3 arylbenzofuran derivatives based on the Claisen rearrangement. ${ }^{14}$ Thus Claisen rearrangement of the cinnamyl ether 6 in the presence of acetic anhydride gave the desired rearranged

1-in

3
iv

4

Scheme 1 Reagents and conditions: i, $\mathrm{PhCOCO}_{2} \mathrm{H}, \mathrm{DCC} ; \mathrm{ii}, \mathrm{TsNH}-$ NH_{2}; iii, $\mathrm{Et}_{3} \mathrm{~N}$ (47% overall); iv, $\mathrm{Rh}_{2}\left(\mathrm{NHCOC}_{3} \mathrm{~F}_{7}\right)_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux (20\%); v, EtOCOCI, Et ${ }_{3}$ N , DMAP (96\%)

6
ii

7

Scheme 2 Reagents and conditions: i, $\mathrm{PhCH}=\mathrm{CHCH}_{2} \mathrm{Cl}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone (85%); ii, $\mathrm{PhN} \mathrm{M} \mathrm{e} e_{2}, \mathrm{Ac}_{2} \mathrm{O}$, heat (81%); $\mathrm{iii}, \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, then $\mathrm{Me} \mathrm{e}_{2} \mathrm{~S}$; iv, M eOH , aq. ammonia (36% overall)
acetoxybenzene 7 (Scheme 2). Ozonolysis gave an intermediate aldehyde, which was intercepted by the phenol liberated by treatment of the crude product with methanolic aqueous ammonia to give the 2-methoxydihydrobenzofuran 8 (Scheme 2). Dihydrobenzofuran 8 is formed as a mixture of diastereoisomers (ca. 16:1 by ${ }^{1} \mathrm{H} N \mathrm{M}$ R spectroscopy) and a combination of NOE studies and comparison of coupling constants with literature values ${ }^{15}$ suggested that the major product was the cisisomer.

Initial experiments showed that the required cross-coupling reactions were not as straightforward as anticipated. Thus, Stille couplings of benzofuranones $\mathbf{4}$ or $\mathbf{5}$ with phenyltrimethyltin were not successful, despite extensive modification of the reaction parameters. Suzuki couplings are often morefacile, but in this case we were only able to isolate products such as 9 , derived from hydrolysis and decarboxylation upon attempted palladium catalysed coupling of 5 with phenylboronic acid under standard conditions (Scheme 3).

Scheme 3 Reagents and conditions: $\mathrm{i}, \mathrm{PhB}(\mathrm{OH})_{2},\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, aq. D M E (57\%)

Because of the problems encountered in coupling benzofuranones, we turned our attention to more robust 3 arylbenzofurans as coupling partners, with the intention of carrying out a subsequent oxidation of the benzofuran to a benzofuranone. A dam has shown that benzofurans are readily oxidised to benzofuran-2-ones by the action of dimethyldioxirane ${ }^{16}$ and in our case the 7-bromobenzo[b]furan 10, prepared conventionally as shown in Scheme 4, was quantitatively con-

Scheme 4 Reagents and conditions: i, $\mathrm{PhCOCH}{ }_{2} \mathrm{Br}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone (92%); ii, PPA, heat (80%); iii, BuLi, B(OM e) ${ }_{3}$, aq. work-up (80%); iv, dimethyldioxirane, acetone (100%)
verted to the 3-hydroxybenzo[b]furan-2-one 12. Removal of the doubly benzylic hydroxy group in $\mathbf{1 2}$ would not be expected to be particularly difficult, so we proceeded to investigate crosscoupling reactions of 10 as a route to benzofuranylindoles related to diazonamide A.

In principle $\mathbf{1 0}$ can be coupled directly with a 4-substituted (e.g. boron, tin) indole derivative, or with a 4 -haloindole through initial conversion of $\mathbf{1 0}$ to a suitable 'metal' derivative Preliminary studies showed that $\mathbf{1 0}$ could be phenylated to give the 7-phenyl derivative 13 either directly with phenylboronic acid, or indirectly by conversion into the boronic acid 11 followed by reaction with bromobenzene (Scheme 5). Both

Scheme 5 Reagents and conditions: i, $\mathrm{PhB}(\mathrm{OH})_{2},\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, aq. D M E (81\%); ii, $\mathrm{PhBr},\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, aq. DME (67\%)
these processes occurred with comparable efficiency but the ease of preparation of $\mathbf{1 1}$ led us to choose it as a coupling partner and we therefore addressed the coupling of this compound with a suitable 4 -haloindole derivative.
4-Bromoindole ${ }^{17}$ was acetylated under Vilsmeier conditions and subsequent reaction with $(\mathrm{BOC})_{2} \mathrm{O}$ gave the N -protected indole 14. The original intention was to elaborate the acetyl group into the oxazole ring using our previously developed synthesis of 3 -oxazolylindoles, ${ }^{6}$ and to this end, the diazo ketone 15 was prepared using Danheiser's modified diazo-transfer procedure. ${ }^{18}$
Unfortunately rhodium(iI) catalysed decomposition of 15 in acetonitrile resulted in none of the desired oxazole 16 (Scheme 6) and therefore we decided to form the oxazole ring after the biaryl coupling. It is interesting to note that in the attempted formation of compounds 4 and $\mathbf{1 6}$, both substrates possess a bromine atom close to the site of generation of the carbenoid. It therefore seems possible that the formation of a cyclic bromonium ylide is competing with the desired reaction. ${ }^{19}$

The Suzuki reaction between the benzofuranylboronic acid 11 and the 4-bromoindole 14 proceeded smoothly and gave the desired 4 -(benzofuran-7-yl)indole 17 in 80% yield (Scheme 7). ${ }^{20}$ D iazo-transfer under the D anheiser conditions gave the diazo ketone 18, rhodium(II) acetate catalysed decomposition of which in acetonitrile gave a complex mixture. When rhodium(II) perfluorobutyramide was used as catalyst a product

14
iii

15
Scheme 6 Reagents and conditions: i, $\mathrm{M} \mathrm{e}_{2} \mathrm{NCOCH}_{3}, \mathrm{POCl}_{3}(70 \%)$; ii (Boc) $)_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{M} \mathrm{CCN}$ (94\%); iii, LHMDS, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CF}_{3} ; \mathrm{M} \mathrm{sN}_{3}$, $\mathrm{Et}_{3} \mathrm{~N}$ (74\%); iv, cat. $\mathrm{Rh}^{2+}, \mathrm{MeCN}$

Scheme 7 Reagents and conditions: $\mathrm{i},\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, aq. DME (80%); ii, LHMDS, CF $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CF}_{3}, \mathrm{M} \mathrm{sN}_{3}, \mathrm{Et}_{3} \mathrm{~N}(82 \%)$; iii, $\mathrm{Rh}_{2}(\mathrm{NH}$ $\left.\mathrm{COC}_{3} \mathrm{~F}_{7}\right)_{4}, \mathrm{M} \mathrm{eCN}(24 \%)$
was found in low yield (24\%). H owever, this turned out not to be the desired oxazole 20 but the unusual 3,4-bridged indole 19, the result of a formal intramolecular aromatic $\mathrm{C}-\mathrm{H}$ insertion reaction at the 6 -position of the benzofuran. The formation of the 3,4-bridged indole 19 was surprising in that the external carbenoid trap (acetonitrile) was used in large excess, but is in line with our previous observations that fluorinated carboxamide ligands on rhodium favour aromatic $\mathrm{C}-\mathrm{H}$ insertion reactions. ${ }^{11}$

Conclusions

A though the desired target $\mathbf{2}$ has yet to be obtained, the model study has provided useful information; the efficiency of the Suzuki coupling for the construction of the 4-benzofuranyl-3acetylindole fragment 17 is impressive and the use of the benzo[b]furan as an extremely robust precursor to the 2 -
hydroxybenzofuran ring of diazonamide A is attractive Recent work within our group has secured an efficient route to valinederived oxazoles, ${ }^{9}$ and we are currently investigating other methods for the formation of suitably functionalised indolyloxazoles. The results of these investigations will be reported in due course

Experimental

For general points, see ref. 11(c).

2-Bromophenyl 2-diazo-2-phenylacetate 3

Benzoylformic acid ($2.33 \mathrm{~g}, 15.5 \mathrm{mmol}$) and 2-bromophenol $(2.6 \mathrm{~g}, 15 \mathrm{mmol})$ were dissolved in dichloromethane (50 ml). The solution was cooled to $0^{\circ} \mathrm{C}$ and dicyclohexylcarbodiimide ($3.09 \mathrm{~g}, 15 \mathrm{mmol}$) was added, and the solution stirred at room temperature for 1 h . The solution was filtered, concentrated in vacuo and purified by flash column chromatography (4:1 light petroleum-ether) to give the intermediate α-keto ester (3.447 g , 75%) as a colourless oil. A solution of this α-keto ester (4 g , 13.1 mmol) and toluene-4-sulfonohydrazide ($2.44 \mathrm{~g}, 13.1 \mathrm{mmol}$) in toluene (100 ml) was heated under reflux with removal of water (D ean-Stark) for 3 h . The toluene was then removed in vacuo and dichloromethane (100 ml) added. Triethylamine (1.5 $\mathrm{ml}, 15 \mathrm{mmol}$) was added and the solution stirred for 5 min at room temperature. The organic solution was then washed with water (50 ml) and brine (50 ml), then dried over magnesium sulfate, filtered, concentrated in vacuo and purified by flash column chromatography (99:1 light petroleum-ether) to give the title compound $\mathbf{3}$ ($2.62 \mathrm{~g}, 47 \%$ from 2-bromophenol) as a yellow oil which solidified to a waxy yellow solid, $\mathrm{mp} 54-55^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 315.9849 . \mathrm{C}_{14} \mathrm{H}_{9}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{2}$ requires $\mathrm{M}, 315.9848$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2095,1725,1472,1212$ and $1129 ; \delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{H} \mathrm{z}^{2}\right.$ $\left.\mathrm{CDCl}_{3}\right) 7.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.0$ and 1.5, ArH), 7.57-7.52(2 H, m, ArH) , 7.45-7.36 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.1$ and 1.5 , ArH), 7.31-7.19 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.14 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 8.0,7.1$ and 1.9, ArH$) ; \delta_{\mathrm{c}}\left(62.9 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 162.4(\mathrm{C}=0), 147.8(\mathrm{C})$, 133.4 (CH), 129.1 (CH), 128.5 (CH), 127.5 (CH), 126.3 (CH), 124.8 (C), 124.2 (CH), 124.1 (CH) and 116.4 (C) (diazo carbon not observed); m/z (EI) 318 (${ }^{81} \mathrm{Br}-\mathrm{M}^{+}, 2 \%$), 316 (${ }^{79} \mathrm{Br}-\mathrm{M}^{+}, 2$), 261 (12), 259 (12), 209 (42), 105 (100), 89 (79), 77 (55) and 63 (43).

7-Bromo-3-phenyl-2,3-dihydrobenzo[b]furan-2-one 4

A solution of 2-bromophenyl 2-diazo-2-phenylacetate 3 (1 g , 3.15 mmol) in dichloromethane (25 ml) was added over 20 min to a refluxing suspension of rhodium(II) perfluorobutyramide $(5 \mathrm{mg}$) in dichloromethane (15 ml). The solution was heated under reflux for a further 20 min , then allowed to cool to room temperature and concentrated in vacuo. Purification by flash column chromatography ($9: 1$ light petroleum-ether) gave 7 -bromo-3-phenyl-2,3-di hydrobenzo[b]furan-2-one 4 ($180 \mathrm{mg}, 20 \%$) as a colourless solid, $\mathrm{mp} 82-83^{\circ} \mathrm{C}$ (from light petroleumdiethyl ether) (Found: C, 58.4; $\mathrm{H}, 2.9 . \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrO}_{2}$ requires C , 58.2; $\mathrm{H}, 3.1 \%$); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1818,1446,1065$ and 1048; $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 7.52(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 7.9$ and 1.2, ArH$), 7.4-7.3$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) , 7.25-7.2 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.14(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 7.5$ and 1.2, ArH), 7.06 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.9, \mathrm{ArH}$) and 4.98 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$ Ph); $\delta_{\mathrm{c}}\left(62.9 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 173.3$ (C=O), 151.7 (C), 134.4 (C), 132.7 (CH), 129.2 (CH), 128.4 (CH), 128.3 (C), 128.2 (CH), 125.6 (CH), 124.1 (CH), 103.6 (C) and 50.6 (CHPh); m/z (EI) 290 $\left.{ }^{81} \mathrm{Br}-\mathrm{M}^{+}, 18 \%\right), 288\left({ }^{79} \mathrm{Br}-\mathrm{M}^{+}, 18\right), 261(43), 259(42), 210(54)$, 181 (80), 152 (48), 84 (77), 64 (76) and 49 (100).

E thyl 7-bromo-2-oxo-3-phenyl-2,3-dihydrobenzo[b]furan-3carboxylate 5

7-Bromo-3-phenyl-2,3-dihydrobenzo[b]furan-2-one 4 (500 mg , 1.73 mmol) was dissolved in dichloromethane (30 ml). Ethyl chloroformate ($250 \mathrm{mg}, 2.3 \mathrm{mmol}$) and triethylamine (200 mg , 2 mmol) were added, and the solution stirred for 5 min . 4Dimethylaminopyridine (5 mg) was added to give an intense
purple solution which faded to colourless over 15 h . The solution was diluted with dichloromethane (20 ml) and washed with water (50 ml) and brine (50 ml), then dried over magnesium sulfate, filtered, concentrated in vacuo and purified by flash column chromatography ($4: 1$ light petroleum-ether) to give the title compound 5 ($597 \mathrm{mg}, 96 \%$) as a sticky solid (Found: M^{+}, 361.9987. $\mathrm{C}_{17} \mathrm{H}_{13}{ }^{81} \mathrm{BrO}_{4}$ requires $\mathrm{M}, 361.9978$); $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) /$ $\mathrm{cm}^{-1} 2977,1822,1740,1444,1239,969$ and $739 ; \delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{H} \mathrm{z}^{2}\right.$ $\left.\mathrm{CDCl}_{3}\right) 7.61(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.1$ and 1.2, $4-\mathrm{H}$ or $6-\mathrm{H}), 7.46(1 \mathrm{H}$, dd, J 7.6 and $1.2,4-\mathrm{H}$ or $6-\mathrm{H}$), $7.40-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.18(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J} 7.4,5-\mathrm{H}), 4.35-4.19(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH} 2)$ and $1.25(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1$, $\mathrm{M} \mathrm{e);} \delta_{\mathrm{c}}\left(62.9 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 169.9 (C=O), 167.1 ($\mathrm{C}=0$), 151.6 (C) 134.1 (C), 133.8 (CH), 129.01 (CH), 128.98 (CH), 127.4 (CH), 126.9 (C), 125.7 (CH), 125.1 (CH), $104.0(\mathrm{C}), 63.3\left(\mathrm{OCH}_{2}\right)$ and $13.9\left(\mathrm{CH}_{3}\right)$; one quaternary C unobserved; m / z (EI$) 362\left({ }^{81} \mathrm{Br}\right.$ $\mathrm{M}^{+}, 10 \%$), 360 (${ }^{79} \mathrm{Br}-\mathrm{M}^{+}, 10$), 318 (14), 316 (14), 290 (96), 288 (100), 261 (44), 259 (42), 209 (32), 180 (45), 152 (90) and 29 (66).

1-B romo-2-[(3-phenyIprop-2-enyl)oxy]benzene 6

A mixture of 2-bromophenol ($10.0 \mathrm{~g}, 57.8 \mathrm{mmol}$), cinnamyl chloride (8.82 g , 1 equiv.) and anhydrous potassium carbonate ($7.99 \mathrm{~g}, 1$ equiv.) in acetone (30 ml) was heated under reflux for 12 h . A fter cooling, the reaction mixture was poured into water $(100 \mathrm{ml})$ and extracted with ether ($3 \times 20 \mathrm{ml}$). The combined organics were washed with aqueous $\mathrm{NaOH}(40 \% ; 2 \times 30 \mathrm{ml})$, brine (40 ml) and dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$. Filtration, followed by concentration in vacuo gave a pale yellow viscous oil which crystallised on standing at $5^{\circ} \mathrm{C}$ to give the title compound 6 (14.14 g , 85%) used without further purification, $\mathrm{mp} 48-50^{\circ} \mathrm{C}$; $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 1479,1244$ and $1031 ; \delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 7.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 7.9, ArH), 7.25-7.58(6 H , m, ArH), 6.91 (1 H , m, CH), 6.72 (2 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.46(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$ and $4.79\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.4, \mathrm{OCH}_{2}\right)$; $\delta_{\mathrm{c}}(62.9 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl} 3$) 155.0 (C), 136.4 (C), 133.4 (CH), 133.0 (CH), 128.4 (CH), 128.2 (CH), 127.9 (CH), 126.6 (CH), 123.7 (CH), $122.1(\mathrm{CH}), 113.8(\mathrm{CH}), 112.4(\mathrm{C})$ and $69.7\left(\mathrm{OCH}_{2}\right)$.

2-B romo-6-(1-phenylprop-2-enyl)phenyl acetate 7

A mixture of the allyl ether $6(2.0 \mathrm{~g}, 6.9 \mathrm{mmol})$, acetic anhydride (6 ml) and N, N-dimethylaniline (6 ml) was heated to reflux under a nitrogen atmosphere for 19 h . A fter cooling, the reaction mixture was poured into ice-water (50 ml) and stirred for 10 min . A fter extraction with ether (100 ml), the organic layer was washed with aqueous $\mathrm{HCl}(5 \% ; 4 \times 20 \mathrm{ml})$, saturated aqueous $\mathrm{NaHCO}_{3}(3 \times 20 \mathrm{ml})$, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and then concentrated in vacuo. Purification by flash chromatography ($1: 9$ ether-light petroleum) gave the title compound 7 as a pale yellow oil ($1.87 \mathrm{~g}, 81 \%$) (Found: $\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 348.0599$. $\mathrm{C}_{17} \mathrm{H}_{15}{ }^{79} \mathrm{BrO}_{2}+\mathrm{NH}_{4}$ requires $\mathrm{M}, 348.0600$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$ $1772,1441,1190$ and $1167 ; \delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl}_{3}\right) 7.52(1 \mathrm{H}$, dd J 1.7 and $7.7, \mathrm{ArH}$), 7.25-7.37 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.16-7.23 (3 H m, ArH), 7.10 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $6.26\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right.$), 5.30 (1 $\mathrm{H}, \mathrm{dt}, \mathrm{J} 1.4$ and $\left.10.3, \mathrm{Z} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.98(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 1.1$ and 17.9 , $\mathrm{E} \mathrm{CH}=\mathrm{CH}_{2}$) and $2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e})$; $\delta_{\mathrm{c}}\left(62.9 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 167.6$ ($\mathrm{C}=0$) , 146.5 (C), 141.4 (C), 138.8 (CH), 137.9 (C), 131.5 (CH), 128.9 (CH), 128.5 (CH), 128.4 (CH), 127.1 (CH), 126.7 (CH), $117.3(\mathrm{CH}), 49.3(\mathrm{CH})$ and $20.5\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{Cl}) 350\left({ }^{81} \mathrm{Br}-\mathrm{M}+\right.$ $\left.\mathrm{NH}_{4}{ }^{+}, 90 \%\right), 348\left({ }^{79} \mathrm{Br}-\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 100\right)$ and 224 (20).

7-B romo-2-methoxy-3-phenyl-2,3-dihydrobenzo[b]furan 8

Ozone was bubbled through a stirred solution of the alkene 7 ($250 \mathrm{mg}, 0.75 \mathrm{mmol}$) in dichloromethane (10 ml) at $-78^{\circ} \mathrm{C}$. A fter all the starting material had been consumed (as indicated by TLC) and the reaction mixture turning deep blue, the excess ozone was removed by bubbling nitrogen gas through the mixture for 1 min , after which time dimethyl sulfide (0.5 ml , 10 equiv.) was added and the solution was allowed to warm to room temperature slowly. A fter concentration in vacuo, the crude product was dissolved in methanol (10 ml) to which was added aqueous ammonia (2 ml). A fter stirring for 12 h aqueous $\mathrm{HCl}(2 \mathrm{~m} ; 3 \mathrm{ml})$ was added, and the solution was
extracted with ether ($3 \times 10 \mathrm{ml}$). The combined organics were washed with water (10 ml), brine (10 ml), dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and concentrated in vacuo. Purification by flash chromatography (1:9 ethyl acetate-light petroleum) gave the title compound $\mathbf{8}$ as a clear oil ($82 \mathrm{mg}, 36 \%$ overall, $16: 1$ ratio cis : trans) (Found: M^{+}, 304.0099. $\mathrm{C}_{15} \mathrm{H}_{13}{ }^{79} \mathrm{BrO}_{2}$ requires M , 304.0099); $v_{\text {max }}{ }^{-}$ (CDCl_{3})/cm ${ }^{-1} 1625,1602$ and $1448 ; \delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl}{ }_{3}\right)$ cis-8 7.14-7.27 (6H, m, ArH), $6.79(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.68(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.7$, ArH), 5.59 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{CHOMe}$), 4.65 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{CH}$ Ph) and $3.34(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e); NOE experiment, irradiation at $\delta 5.59$ caused enhancement at $\delta 4.65(4.4 \%)$; trans-8 $7.13(6 \mathrm{H}, \mathrm{m}$, ArH), 7.01 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.2, \mathrm{ArH}$), 6.69 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.7, \mathrm{ArH}$), 5.52 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.3, \mathrm{CHOM}$ e), $4.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.3, \mathrm{CHPh}$) and 3.60 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}$); NOE experiment, irradiation at $\delta 5.52$ caused no enhancement at $\delta 4.46 ; \delta_{\mathrm{c}}\left(62.9 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ cis-8 131.4 (CH), 130.2 (CH), 128.1 (CH), 127.6 (CH), 124.0 (CH), 112.5 $(\mathrm{CH}), 108.5(\mathrm{CH}), 56.5(\mathrm{CH})$ and $53.8\left(\mathrm{OCH}_{3}\right)$; trans-8 131.7 (CH), 129.2 (CH), 127.6 (CH), 127.4 (CH), 114.1 (CH), 103.2 $\left(\mathrm{CHOCH}_{3}\right), 56.4(\mathrm{CH})$ and $55.6\left(\mathrm{OCH}_{3}\right)$; quaternary Cs unobserved; m / z (EI) $306\left({ }^{81} \mathrm{Br}-\mathrm{M}^{+}, 20 \%\right)$, $304\left({ }^{79} \mathrm{Br}-\mathrm{M}^{+}, 30\right)$, 165 (100) and 105 (40).

E thyl 2-(3-bromo-2-hydroxyphenyl)-2-phenylacetate 9

A solution of ethyl 7-bromo-2-oxo-3-phenyl-2,3-dihydro-benzo[b]furan-3-carboxylate 5 ($100 \mathrm{mg}, 0.28 \mathrm{mmol}$) in dimethoxyethane (8 ml) was degassed. Tetrakis(triphenylphosphine)palladium(0) (30 mg) was added and the solution further degassed. A fter stirring for 10 min , aqueous sodium carbonate ($2 \mathrm{~m} ; 0.5 \mathrm{ml}, 1 \mathrm{mmol}$) was added followed by phenylboronic acid ($65 \mathrm{mg}, 0.5 \mathrm{mmol}$) and the solution was degassed then stirred under an atmosphere of nitrogen for 150 h . Dichloromethane (50 ml) was added and the solution washed with water (50 ml) and brine (50 ml), then dried over magnesium sulfate, filtered and concentrated in vacuo. Purification by flash column chromatography (9:1 light petroleum-dichloromethane) afforded the title compound 9 ($53 \mathrm{mg}, 57 \%$) as a colourless oil (Found: M^{+}, 336.0184. $\mathrm{C}_{16} \mathrm{H}_{15}^{81} \mathrm{BrO}_{3}$ requires M , 336.0185); $v_{\text {max }}($ film $) /$ $\mathrm{cm}^{-1} 3520$ (br, OH), 1735, 1450, 1240, 1175 and 700; $\delta_{\mathrm{H}}(250$ $\mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}$) 7.42-7.27 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.05 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.7$ and 1.2, ArH) , $6.77(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.7, \mathrm{ArH}), 6.72(1 \mathrm{H}, \mathrm{s}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}$), $5.30\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCO}_{2} \mathrm{Et}\right), 4.25(2 \mathrm{H}, \mathrm{qd}$, J 7.1 and $0.8, \mathrm{OCH}_{2}$) and $1.28(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{M} \mathrm{e}) ; \delta_{\mathrm{c}}(62.9 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 172.6(\mathrm{C}=0), 150.0(\mathrm{C}), 137.0(\mathrm{C}), 131.1$ (CH), 129.2 (CH), 128.84 (C), 128.79 (CH), 128.6 (CH), 127.4 (CH), 121.4 $(\mathrm{CH}), 110.9(\mathrm{C}), 61.4\left(\mathrm{OCH}_{2}\right), 52.1(\mathrm{CH})$ and $14.1\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (EI) $336\left({ }^{81} \mathrm{Br}_{-}{ }^{+}, 16 \%\right), 334\left({ }^{79} \mathrm{Br}-\mathrm{M}^{+}, 16\right), 290$ (26), 288 (26), 263 (64), 261 (100), 181 (53), 152 (58), 76 (24) and 29 (38).

7-Bromo-3-phenylbenzo[b]furan 10

Potassium carbonate ($10 \mathrm{~g}, 72 \mathrm{mmol}$) was added to a solution of phenacyl bromide ($14.4 \mathrm{~g}, 72 \mathrm{mmol}$) and 2-bromophenol ($12.5 \mathrm{~g}, 72 \mathrm{mmol}$) in acetone (40 ml), and the resulting suspension heated under reflux for 4 h . The suspension was then allowed to cool to room temperature and poured into water $(300 \mathrm{ml})$. The precipitate was collected by filtration and recrystallised from absolute ethanol to afford 2-(2-bromo-phenoxy)-1-phenylethan-1-one ($19.3 \mathrm{~g}, 92 \%$) as a colourless solid, mp 114-115 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 57.5 ; \mathrm{H}, 3.6 . \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2}$ requires $\mathrm{C}, 57.8 ; \mathrm{H}, 3.8 \%)$; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1706,1479$ and $1220 ; \delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right)$ 8.06-8.00 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.66-7.46 $(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.22(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 7.9$ and $1.6, \mathrm{ArH}), 6.90-6.81$ (2 $\mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $5.33\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right) ; \delta_{\mathrm{c}}\left(62.9 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 194.0 (C=O), 154.5 (C), 134.3 (C), 133.9 (CH), 133.6 (CH), 128.8 (CH), 128.4 (CH), 128.2 (CH), 122.8 (CH), 113.8 (CH), $112.3(\mathrm{CBr})$ and $71.8\left(\mathrm{OCH}_{2}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 292\left({ }^{81} \mathrm{Br}-\mathrm{M}{ }^{+}, 0.5 \%\right)$, $290\left({ }^{79} \mathrm{Br}-\mathrm{M}^{+}, 0.5\right), 211(20), 105$ (100), 77 (36) and 41 (74).
Polyphosphoric acid (30 g) was preheated to $80^{\circ} \mathrm{C}$ for 20 min .2 -(2-Bromophenoxy)-1-phenylethan-1-one ($5.82 \mathrm{~g}, 20$ mmol) was added in one portion and the viscous mixture heated at $90^{\circ} \mathrm{C}$ with stirring for 40 h . Water (50 ml) was added and
the precipitate collected by filtration. Recrystallisation from absolute ethanol gave the title compound $10(4.78 \mathrm{~g}, 88 \%)$ as a colourless solid, mp $73-74^{\circ} \mathrm{C}$ (Found: C, 61.5; H, 3.1. $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrO}$ requires $\left.\mathrm{C}, 61.6 ; \mathrm{H}, 3.3 \%\right)$; $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3111$, 3052, 1444, 1229, 1104 and 696; $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 7.84$ (1 $\mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.76(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.8$ and 1.0, ArH), 7.63-7.58(2 H, $\mathrm{m}, \mathrm{ArH}), 7.53-7.35(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.18(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.85$, $\mathrm{ArH}) ; \delta_{\mathrm{c}}\left(62.9 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 152.9$ (C), 141.9 (CH), 131.5 (C), 129.1 (CH), 127.92 (C), 127.89 (CH), 127.7 (CH), 127.6 (CH), 124.4 (CH), 123.2 (C), 119.7 (CH) and 104.7 (CBr); m/z (EI) $274\left({ }^{81} \mathrm{Br}-\mathrm{M}^{+}, 98 \%\right), 272\left({ }^{79} \mathrm{Br}-\mathrm{M}^{+}, 100\right), 165$ (80), 82 (48) and 63 (20).

(3-P henylbenzo[b]furan-7-yl)boronic acid 11

A solution of 7-bromo-3-phenylbenzo[b]furan 10 ($5 \mathrm{~g}, 18.3$ mmol) in dry THF (200 ml) was cooled to $-78^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. n-Butyllithium (15.4 ml of a 2.5 m solution in hexanes, 38.5 mmol) was added dropwise, and the resulting solution stirred at $-78^{\circ} \mathrm{C}$ for 30 min . Trimethyl borate (15 ml , excess) was added rapidly in one portion and the solution stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then allowed to warm to room temperature and poured into aqueous hydrochloric acid (0.001 м). The product was extracted into dichloromethane (3×100 ml) and the combined organic phases dried over sodium sulfate, filtered and concentrated in vacuo to give a solid which was recrystallised (dichloromethane-light petroleum with 1 drop of water) to afford the title compound $11(3.491 \mathrm{~g}, 80 \%)$ as a colourless powder, mp $107-108{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 238.0800$. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BO}_{3}$ requires $\mathrm{M}, 238.0801$); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3276(\mathrm{br}$, OH), 2964, 2924, 1364, 1265 and 737; $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$ [${ }^{2} \mathrm{H}_{6}$ ID M SO) 7.91 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.8$ and 1.6, ArH), $7.88(1 \mathrm{H}, \mathrm{s}, 2-$ H), 7.85 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.3$ and 1.6, A rH), 7.67-7.36 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.8$ and $7.3, \mathrm{ArH})$ and $7.15[2 \mathrm{H}, \mathrm{s}$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{B}(\mathrm{OH})_{2}\right] ; \delta_{\mathrm{c}}\left(62.9 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}-\left[^{2} \mathrm{H}_{6} \mathrm{D}\right.\right.$ M SO) 160.8 (C) , 141.1 (CH), 131.7 (C), 131.1 (CH), 128.9 (CH), 127.4 (CH), 127.2 (CH), 125.1 (C), 122.8 (CH), 122.3 (CH), 122.3 (C-B, $\mathrm{J}_{\mathrm{c}-\mathrm{B}} 94$) and 111.6 (C); m/z (EI) 238 (${ }^{+}, 52 \%$), 194 (100), 165 (74) and 45 (97).

7-B romo-3-hydrox y-3-phenyl-2,3-dihydrobenzo[b]furan-2-one 12

 A cooled ($-78{ }^{\circ} \mathrm{C}$) solution of dimethyldioxirane (0.0976 m in acetone, $4 \mathrm{ml}, 0.39 \mathrm{mmol}$) was rapidly added to a cooled $\left(-78^{\circ} \mathrm{C}\right.$) solution of 7 -bromo-3-phenylbenzo[b]furan 10 (50 $\mathrm{mg}, 0.18 \mathrm{mmol}$) in acetone (1.5 ml). The solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then allowed to warm to room temperature overnight. The solvent was removed in vacuo to afford the pure title compound 12 ($56 \mathrm{mg}, 100 \%$) as a colourless oil (Found: M^{+}, 305.9713. $\mathrm{C}_{14} \mathrm{H}_{9}{ }^{81} \mathrm{BrO}_{3}$ requires $\mathrm{M}, 305.9716$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 3420 (br, OH), 1817, 1440 and 1044; $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 7.55$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.1$ and 1.3, ArH), 7.39-7.34 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.25 (1 $\mathrm{H}, \mathrm{dd}, \mathrm{J} 7.5$ and 1.3, ArH), $7.09(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.6, \mathrm{ArH})$ and 3.7-3.2 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}$); $\delta_{\mathrm{c}}\left(62.9 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 174.8 (C=O), 151.1 (C), 138.3 (C), 134.2 (CH), 131.0 (C), 129.3 (CH), 129.0 (CH), 126.3 (CH), 125.4 (CH), 124.2 (CH), 104.1 (CBr) and $78.0(3-\mathrm{C})$; m/z (EI) $306\left({ }^{81} \mathrm{Br}-\mathrm{M}+, 4 \%\right), 304\left({ }^{(99} \mathrm{Br}-\right.$ $\mathrm{M}^{+}, 3$), 279 (10), 278 (19), 277 (20), 276 (18), 275 (13), 105 (22), 58 (38) and 43 (100).
3,7-D iphenylbenzo[b]furan 13

Tetrakis(triphenylphosphine)palladium(0) (60 mg) was added to a degassed solution of 7-bromo-3-phenylbenzo[b]furan 10 $(273 \mathrm{mg}, 1 \mathrm{mmol})$ in dimethoxyethane (18 ml). The solution was further degassed and aqueous sodium carbonate ($2 \mathrm{~m} ; 1 \mathrm{ml}$, 2 mmol) and phenylboronic acid ($183 \mathrm{mg}, 1.5 \mathrm{mmol}$) were added and the solution heated under reflux for 8 h . The solution was then allowed to cool to room temperature, diluted with dichloromethane (30 ml) and washed with water (30 ml), then with brine (30 ml). The solution was dried over magnesium sulfate, filtered and concentrated in vacuo. Recrystallisation from ethanol afforded the title compound $13(220 \mathrm{mg}, 81 \%)$ as a colourless solid, mp 96-97 ${ }^{\circ} \mathrm{C}$ (Found: M^{+}, 270.1052. $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}$
requires $\mathrm{M}, 270.1045)$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3064,3061,1409,1123$, 760 and 698; $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 7.89-7.85(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.81(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.7$ and 1.3, ArH), 7.67-7.63 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.53-7.32 ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}(62.9 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 141.4 (CH), 136.4 (C), 132.0 (C), 128.9 (CH), 128.7 (CH), 128.6 (CH), 128.5 (C), 127.7 (CH), 127.6 (CH), 127.5 (CH), 127.2 (C) , 126.0 (C), 124.2 (CH), 123.5 (CH), 122.4 (C) and 119.5 (CH); m/z (EI) $270\left(\mathrm{M}^{+}, 100 \%\right), 241$ (15), 239 (16) and 165 (12).

The same compound was produced (67% yield) by an identical coupling reaction between (3-phenylbenzo[b]furan-7yl)boronic acid 11 and bromobenzene.

3-A cetyl-4-bromoindole

To a stirred solution of phosphorus oxychloride ($4.71 \mathrm{ml}, 3.3$ equiv.) in chloroform (50 ml) was added dimethylacetamide $(4.69 \mathrm{ml}, 3.3$ equiv.) dropwise, keeping the temperature below $10^{\circ} \mathrm{C}$. A fter the addition was complete, the reaction mixture was stirred for 10 min to allow completeformation of the greenish yellow Vilsmeier complex. 4-Bromoindole ${ }^{17}$ (3.0 g , 15.3 mmol) in chloroform (50 ml) was added to the reaction mixture dropwise over 30 min , keeping the reaction mixture around $10^{\circ} \mathrm{C}$. The reaction mixture was then refluxed for 4 h . A fter cooling, it was extracted with water ($3 \times 100 \mathrm{ml}$). The combined aqueous phases were taken to pH 5 using sodium acetate and allowed to stand at room temperature overnight. The suspension was then filtered, collected and recrystallised from chloroform. This yielded the title compound as a colourless solid (2.55 g, 70\%), mp 184-186 ${ }^{\circ} \mathrm{C}$ (Found: C, 50.2; H, 3.23; N, 6.3. $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrNO}$ requires $\mathrm{C}, 50.45$; $\mathrm{H}, 3.39 ; \mathrm{N}, 5.9 \%$) (Found: M^{+}, 236.979. $\mathrm{C}_{10} \mathrm{H}_{8}{ }^{79} \mathrm{BrNO}$ requires $\left.\mathrm{M}, 236.9790\right) ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 3270, 1644 and 1435; $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 7.80(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, 7.06-7.15 (2 H , m, ArH), 6.71-6.80 (1 H , m, ArH), 2.84 (1 H , br s , exchangeable with $\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}$) and $2.24(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{c}}(62.9$ M Hz; CDCl ${ }_{3}$) 192.2 (C=0), 138.8 (C), 133.5 (C), 126.9 (CH), 124.5 (C), 123.8 (CH), 118.5 (C), 114.2 (C), $111.4(\mathrm{CH})$ and $29.6\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 239\left({ }^{81} \mathrm{Br}-\mathrm{M}^{+}, 30 \%\right), 237\left({ }^{79} \mathrm{Br}-\mathrm{M}^{+}, 35\right), 224$ (100) and 222 (100)

tert-B utyl 3-acetyl-4-bromoindole-1-carboxylate 14

To a stirred suspension of 3-acetyl-4-bromoindole ($2.0 \mathrm{~g}, 18.8$ mmol) and di-tert-butyl dicarbonate ($2.02 \mathrm{~g}, 1.2$ equiv.) in acetonitrile (50 ml) was added 4-dimethylaminopyridine (102.6 $\mathrm{mg}, 10 \% \mathrm{~mol}$ equiv.). A fter 30 min the reaction mixture was diluted with ether (50 ml). The organic layer was washed in succession by $\mathrm{KHSO}_{4}(1 \mathrm{~m} ; 3 \times 50 \mathrm{ml})$, water (50 ml), saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$, brine (50 ml), then dried $\left(\mathrm{M} \mathrm{GSO}_{4}\right)$ and concentrated in vacuo. Recrystallisation from ethyl acetate gave the title compound 14 as a colourless solid ($2.68 \mathrm{~g}, 94 \%$), $\mathrm{mp} 70-72^{\circ} \mathrm{C}$ (Found: M^{+}, 337.0314. $\mathrm{C}_{15} \mathrm{H}_{16}{ }^{79} \mathrm{BrNO}_{3}$ requires M , 337.0314); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1750$, 1685, 1541 and 1420; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz;} \mathrm{CDCl}_{3}\right) 8.18-8.22(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.03(1 \mathrm{H}, \mathrm{s}$, ArH), 7.51-7.54 (1 H, m, ArH), 7.19-7.25 (1 H, m, ArH), 2.64 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$) and $1.69\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e}_{3}\right) ; \delta_{\mathrm{c}}\left(62.9 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 194.7 (C=O), 137.0 (C=O), 130.4 (CH), 129.0 (CH), 127.2 (C), 126.4 (CH), 123.3 (C), 114.7 (C), 114.4 (CH), 85.6 (C M e3), 31.2 $\left(\mathrm{CH}_{3}\right)$ and $28.0\left(\mathrm{CH}_{3}\right)$; one quaternary C unobserved; $\mathrm{m} / \mathrm{z}(\mathrm{EI})$ $340\left({ }^{81} \mathrm{Br}-\mathrm{M} \mathrm{H}^{+}, 30 \%\right), 338\left({ }^{79} \mathrm{Br}-\mathrm{M} \mathrm{H}^{+}, 30\right), 240(100)$ and 238 (100).

tert-B utyl 4-bromo-3-diazoacetylindole-1-carboxylate 15

A solution of LiHM DS was prepared in situ by the dropwise addition of butyllithium ($1.6 \mathrm{~m} ; 6.65 \mathrm{ml}, 1.2$ equiv.) to a stirred solution of hexamethyldisilazane ($2.25 \mathrm{ml}, 1.3$ equiv.) in THF (30 ml) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. A fter stirring for 15 min at this temperature, the solution was cooled to $-78^{\circ} \mathrm{C}$. At this temperature, tert-butyl 3-acetyl-4-bromoindole-1-carboxylate 14 ($3.0 \mathrm{~g}, 8.87 \mathrm{mmol}$) was added dropwise as a solution in THF (70 ml), over a 20 min period. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and then 2,2,2-trifluoroethyl trifluoroacetate ($1.43 \mathrm{ml}, 1.2$ equiv.) was added rapidly in one
portion. A fter stirring for 10 min the mixture was diluted with ether (40 ml) and washed with aqueous $\mathrm{HCl}(5 \% ; 40 \mathrm{ml})$. The aqueous layer was extracted with ether ($2 \times 40 \mathrm{ml}$). The combined organics were washed with brine (20 ml) and concentrated in vacuo. The resulting solid was then suspended in acetonitrile (40 ml) to which was added water ($0.160 \mathrm{ml}, 1$ equiv.) and triethylamine ($1.85 \mathrm{ml}, 1.5$ equiv.). To this stirred solution was added methanesulfonyl azide ($1.90 \mathrm{~g}, 1.5$ equiv.) dropwise as a solution in acetonitrile (20 ml) over a 20 min period. A fter the addition was complete, the resulting mixture was stirred for 12 h . The reaction mixture was then diluted with ether (100 ml) and washed with aqueous NaOH ($15 \% ; 4 \times 30 \mathrm{ml}$), brine (30 ml), dried ($\mathrm{M} \mathrm{GSO}_{4}$) and concentrated under reduced pressure. Purification by flash chromatography (1:9 ethyl acetate-light petroleum) gave the title compound $\mathbf{1 5}$ as a pale yellow solid ($2.40 \mathrm{~g}, 74 \%$), mp 131-133 ${ }^{\circ} \mathrm{C}$ (Found: C, 49.7; H, 3.8; N, 11.6. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{O}_{3}$ requires C, 49.5; $\mathrm{H}, 3.9 ; \mathrm{N}, 11.5 \%$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 2099,1740,1622$ and 1421; $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz}^{2} \mathrm{CDCl}_{3}\right.$) 8.18 (1 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.90(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.48(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.23(1 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 5.67(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and $1.67\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e}_{3}\right) ; \delta_{\mathrm{c}}(100$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) 183.2 (C=O), 148.5 (C), 136.6 (C), 128.4 (CH), 128.2 (CH), 126.5 (C), 126.1 (CH), 121.1 (C), 114.4 (CH), 114.1 (C), $85.5\left(\mathrm{CM} \mathrm{e}_{3}\right), 58.3(\mathrm{CH})$ and $28.0\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 366\left({ }^{81} \mathrm{Br}\right.$ $\left.\mathrm{M} \mathrm{H}^{+}, 100 \%\right), 364\left({ }^{79} \mathrm{Br}-\mathrm{M} \mathrm{H}^{+}, 100\right), 210(60)$ and 208 (60).

tert-Butyl 3-acetyl-4-(3-phenylbenzo[b]furan-7-yl)indole-1carboxylate 17

A solution of tert-butyl 3-acetyl-4-bromoindole-1-carboxylate 14 ($338 \mathrm{mg}, 1 \mathrm{mmol}$) in 1,2-dimethoxyethane (15 ml) was degassed. Tetrakis(triphenylphosphine)palladium(0) (30 mg) was added and the solution further degassed. A queous sodium carbonate ($2 \mathrm{~m} ; 1.5 \mathrm{ml}, 3 \mathrm{mmol}$) was added followed by ($3-$ phenylbenzo[b]furan-7-yl)boronic acid 11 ($357 \mathrm{mg}, 1.5 \mathrm{mmol}$) and the solution further degassed, then heated under reflux for 15 h . Dichloromethane (50 ml) was added and the solution washed with water $(2 \times 30 \mathrm{ml})$, then dried over magnesium sulfate, filtered and concentrated in vacuo. Purification by chromatography (dichloromethane) gave the title compound 17 ($359 \mathrm{mg}, 80 \%$) as a colourless foam; $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 8.37$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.8$ and 2.6, ArH), 8.18 ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), $7.89(1 \mathrm{H}, \mathrm{dd}$, J 7.1 and 2.1, ArH), 7.73-7.69 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.56-7.32 (7 H , $\mathrm{m}, \mathrm{ArH}), 2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e})$ and $1.75\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e} \mathrm{e}_{3}\right)$.

The compound was characterised, after removal of the nitrogen protecting group, as 3 -acetyl-4-(3-phenylbenzo[b]furan-7yl) indole, mp 257-257 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 81.9; H, 5.0; N, 3.9. $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 82.0 ; \mathrm{H}, 4.9 ; \mathrm{N}, 4.0 \%\right)$; $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) /$ $\mathrm{cm}^{-1} 3456,1722,1602$ and $1121 ; \delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 10.6(1$ H, br s, NH), $8.22(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.06(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.85(1 \mathrm{H}$, dd, J 6.8 and 2.2, ArH), 7.74 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.5, \mathrm{ArH}$), 7.61-7.48 (3 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.41-7.23(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $2.2(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{c}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 196.1$ (C=O), 158.6 (C), 146.6 (CH), 142.8 (C), 138.7 (CH), 137.0 (C), 135.1 (C), 134.1 (CH), 133.4 (C), 133.0 (C) , 132.3 (CH), 132.0 (CH), 130.0 (C), 129.3 (CH), 129.2 (CH), 127.8 (CH), 127.7 (CH), 126.4 (C), 124.5 (C) , 123.4 (CH), $117.0(\mathrm{CH})$ and $32.9\left(\mathrm{CH}_{3}\right)$; m/z (EI) 351 ($\mathrm{M}^{+}, 100 \%$), 336 (41), 139 (15) and 43 (30).

tert-Butyl 3-diazoacetyl-4-(3-phenylbenzo[b]furan-7-yl)indole-1carboxylate 18

H examethyldisilazane ($194 \mathrm{mg}, 0.25 \mathrm{ml}, 1.2 \mathrm{mmol}$) in THF (2 ml) was cooled to $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. A solution of n-butyllithium in hexanes ($2.5 \mathrm{~m} ; 0.48 \mathrm{ml}, 1.2 \mathrm{mmol}$) was added and the solution stirred for 10 min . The solution was cooled to $-78^{\circ} \mathrm{C}$ and 17 ($451 \mathrm{mg}, 1 \mathrm{mmol}$) in THF (3 ml) added dropwise After stirring at $-78^{\circ} \mathrm{C}$ for $45 \mathrm{~min}, 2,2,2-$ trifluoroethyl trifluoroacetate ($235 \mathrm{mg}, 0.16 \mathrm{ml}, 1.2 \mathrm{mmol}$) was added rapidly in one portion. The solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min , then poured into aqueous hydrochloric acid ($5 \% ; 30 \mathrm{ml}$) and dichloromethane (30 ml). The phases were separated and the aqueous phase extracted twice with dichloro-
methane (30 ml). The combined organic phases were washed with brine ($2 \times 30 \mathrm{ml}$) and concentrated in vacuo to give 680 mg of an oil which was immediately dissolved in acetonitrile (10 ml). Triethylamine ($120 \mathrm{mg}, 1.2 \mathrm{mmol}$), water (1 drop) and methanesulfonyl azide ($150 \mathrm{mg}, 1.2 \mathrm{mmol}$) were added and the solution stirred overnight at room temperature in the dark. The solution was concentrated in vacuo to a volume of ca. 10 ml and dichloromethane (50 ml) added. The solution was then washed with aqueous $\mathrm{NaOH}(10 \% ; 3 \times 30 \mathrm{ml})$, then with brine (30 ml), then dried over magnesium sulfate, filtered, concentrated in vacuo and purified by flash column chromatography ($3: 2$ dichloromethane-light petroleum) to give the title compound 18 ($393 \mathrm{mg}, 82 \%$) as a yellow oil, used without further purification; $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 2101,1744,1626,1296$ and $1152 ; \delta_{\mathrm{H}}(250 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 8.35(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.04(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 7.2 and 1.9, ArH), $7.70(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.67-7.63(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.52-7.37(7 H, m, ArH), 4.68(1 H, s, CH N 2) and $1.69(9 \mathrm{H}, \mathrm{s}$, CM es) ; $\delta_{\mathrm{c}}\left(250 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 182.9 (C=0), 153.5 ($\mathrm{C}=0$), 149.0 (C), 141.4 (CH), 136.2 (C), 131.9 (C), 129.8 (C), 129.0 (CH), 128.8 (CH), 127.66 (CH), 127.57 (CH), 126.4 (C), 126.2 (C), 126.0 (CH), 125.8 (C), 125.4 (CH), 125.0 (CH), 123.5 (CH), 122.8 (C), 120.0 (CH), 115.2 (CH), 114.5 (C), 85.0 ($\mathrm{CM} \mathrm{e}_{3}$) and $28.1\left(\mathrm{CH}_{3}\right)$ (diazo carbon not observed); m/z (EI) 309 (100%), 280 (16) and 252 (13).

R hodium(II) perfluorobutyramide catalysed decomposition of tert-butyl 3-diazoacetyl-4-(3-phenylbenzo[b]furan-7-yl) indole-1carboxylate 18

A solution of 18 ($98 \mathrm{mg}, 0.205 \mathrm{mmol}$) in chloroform (5 ml) was added over 8 h to a suspension of rhodium(II) perfluorobutyramide (1 mg) in chloroform (3 ml) containing acetonitrile $(82 \mathrm{mg}, 2 \mathrm{mmol})$. The solvent was then removed in vacuo and the residue purified twice by flash column chromatography (3:2 dichloromethane-light petroleum) to give tert-butyl 7-0x0-3-phenyl-7,9-dihydro-6H -furo[$\left.3^{\prime \prime}, 2^{\prime \prime}: 5^{\prime}, 6^{\prime}\right]$ benzo[4,5]cyclohepta-[cd]indole-9-carboxylate 19 ($22 \mathrm{mg}, 24 \%$) as a colourless oil (Found: M^{+}, 449.1638. $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{NO}_{4}$ requires M , 449.1627); $v_{\max }$ (film)/ $/ \mathrm{cm}^{-1} 1746,1686,1546,1258$ and $1149 ; \delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz}^{\prime}\right.$ $\left.\mathrm{CDCl}_{3}\right) 8.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.8$ and 0.8 , indole $5-\mathrm{H}$ or $7-\mathrm{H}), 8.33(1$ $\mathrm{H}, \mathrm{dd}, \mathrm{J} 8.3$ and 0.8 , indole $5-\mathrm{H}$ or $7-\mathrm{H}$), 8.27 (1 H , s, indole $2-\mathrm{H}$ or benzofuran $2-\mathrm{H}), 7.83(1 \mathrm{H}, \mathrm{s}$, indole $2-\mathrm{H}$ or benzofuran $2-$ H), 7.81 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9$, benzofuran $4-\mathrm{H}$ or $5-\mathrm{H}$), $7.68-7.61$ (3 H , m, ArH) , 7.52-7.46 (2 H, m, ArH), 7.42-7.39 (1 H, m, ArH), $7.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9$, benzofuran $4-\mathrm{H}$ or $5-\mathrm{H}), 4.09(2 \mathrm{H}, \mathrm{s}$, COCH_{2}) and $1.70\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e}_{3}\right) ; \delta_{\mathrm{c}}\left(62.9 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 190.1$ ($\mathrm{C}=0$) , 153.8 ($\mathrm{C}=0$), 149.0 (C), 141.4 (CH), 136.1 (C), 131.7 (C), 129.1 (CH), 129.2 (CH), 127.7 ($2 \times \mathrm{CH}$), 127.6 (C), 126.8 (C), 126.6 (CH), 126.5 (CH), 125.3 (CH), 122.4 (C), 122.1 (C), 121.9 (C), $120.6(\mathrm{CH}), 115.2(\mathrm{CH}), 85.5\left(\mathrm{CM} \mathrm{e}_{3}\right), 52.5\left(\mathrm{CH}_{2} \mathrm{CO}\right)$ and $28.1\left(\mathrm{CH}_{3}\right)$ (2 quaternary carbons not seen); $\mathrm{m} / \mathrm{z}(\mathrm{EI}) 449$ ($\mathrm{M}^{+}, 20 \%$), 394 (12), 349 (41), 320 (26), 57 (47), 56 (59), 43 (61) and 41 (100).

A cknowledgements

We thank Fisons Pharmaceuticals (now Astra Charnwood) for their generous support of our research programmes, and Loughborough University and Shell Research for additional support. We thank the EPSRC M ass Spectrometry Service at Swansea for mass spectra.

References

1 G. Pattenden, J. H eterocycl. C hem., 1992, 29, 607; J. P. M ichael and G. Pattenden, A ngew. Chem., Int. Ed. Engl., 1993, 32, 1.

2 P. Wipf, Chem. Rev., 1995, 95, 2115.
3 N. Lindquist, W. Fenical, G. D. van Duyne and J. Clardy, J. Am. Chem. Soc., 1991, 113, 2303.
4 J. P. K onopelski, J. M. H ottenroth, H. M. Oltra, E. A. V éliz and Z.-C. Y ang, Synlett, 1996, 609.

5 K. J. D oyle and C. J. M oody, Tetrahedron, 1994, 50, 3761.

6 K. J. D oyle and C. J. M oody, Synthesis, 1994, 1021.
7 C. J. M oody, K . J. D oyle, M . C. Elliott and T. J. M owlem, P ure A ppl. Chem., 1994, 66, 2107.
8 For example, see: M. P. Doyle, W. E. Buhro, J. G. Davidson, R. C. Elliott, J. W. H oekstra and M. Oppenhuizen, J. Org. Chem., 1980, 45, 3657; R. Connell, F. Scavo, P. H elquist and B. Å kermark, Tetrahedron Lett., 1986, 27, 5559; R. D. Connell, M. Tebbe, P. Helquist and B. Å kermark, Tetrahedron Lett., 1991, 32, 17; R. D. Connell, M. Tebbe, A. R. Gangloff, P. Helquist and B. Å kermark, Tetrahedron, 1993, 49, 5445.

9 Our synthesis of valine derived oxazoles is described in: M. C. Bagley, R. T. Buck, S. L. Hind, C. J. M oody and A. M . Z. Slawin, Synlett, 1996, 825.
10 K. J. Doyle, PhD Thesis, Loughborough U niversity, 1994; M. C. Elliott, PhD Thesis, L oughborough U niversity, 1994.
11 (a) D. S. Brown, M. C. Elliott, C. J. M oody, T. J. M owlem, J. P. M arino and A. Padwa, J. Org. Chem., 1994, 59, 2447; (b) S. M iah, A. M. Z. Slawin, C. J. M oody, S. M. Sheehan, J. J. P. M arino, M . A . Semones, A. Padwa and I. C. Richards, Tetrahedron, 1996, 52, 2489; (c) S. M iah, C. J. M oody, I. C. Richards and A. M. Z. Slawin, J. Chem. Soc., Perkin Trans. 1, 1997, preceding paper.
12 M. H rytsak and T. D urst, J. Chem. Soc., Chem. Commun., 1987, 1150.

13 T. H. Black, S. M. A rrivo, J. S. Schumm and J. M. K nobeloch, J. Org. C hem., 1987, 52, 5425.

14 A pparently others have also attempted routes that feature [3,3]rearrangements to the benzofuran portion of diazonamide; see ref. 4 and E. Vedejs and J. Wang, A bstr. Pap. A m. C hem. Soc., 1996, 212, $93-0 R G N$. The Claisen rearrangement has been used in the
synthesis of dihydrobenzofurans related to the aflatoxins: C. P. G orst-A Ilman and P. S. Steyn, J. C hem. Soc., Perkin Trans. 1, 1987, 163.

15 D. R. Arnold, B. J. Fahie, L. J. Lamont, J. Wierzchowski and K . M . Young, C an. J. Chem., 1987, 65, 2734.
16 W. A dam, M. A hrweiler, D. Reinhardt and M. Sauter, Tetrahedron Lett., 1994, 35, 6063; W. A dam, K. Peters and M . Sauter, Synthesis, 1994, 111; W. A dam and M. Sauter, Tetrahedron, 1994, 50, 11441.
17 M. P. M oyer, J. F. Shiurba and H. Rapoport, J. Org. Chem., 1986, 51, 5106.
18 R. L. D anheiser, R. F. M iller, R. G. Brisbois and S. Z. Park, J. Org. C hem., 1990, 55, 1959.
19 R. M. M oriarty, B. R. Bailey, O. Prakash and I. Prakash, J. Am. C hem. Soc., 1985, 107, 1375; R .-Y. Y ang, L .-X . Dia and C.-G. Chen, J. Chem. Soc., Chem. Commun., 1992, 1487; A. Padwa and S. F. H ornbuckle, Chem. Rev., 1991, 91, 263.

20 For other examples of palladium catalysed coupling reactions with 4-bromoindoles, see: P. J. H arrington, L. S. Hegedus and K. F. M cD aniel, J. Am. Chem. Soc., 1987, 109, 4335; L. S. Hegedus, J. L. Toro, W. H. M iles and P. J. H arrington, J. Org. C hem., 1987, 52, 3319; D. C. H orwell, P. D. N ichols, G. S. Ratcliffe and E. Roberts, J. Org. Chem., 1994, 59, 4418; Y. Yokoyama, T. M atsumoto and Y. M urakami, J. Org. Chem., 1995, 60, 1486; Y. Yokoyama, K. K ondo, M. M itsuhashi and Y. M urakami, Tetrahedron Lett., 1996, 37, 9309.

Paper 7/00684E
Received 29th J anuary 1997
A ccepted 3rd M arch 1997

